Психология отношений

Если тебе трудно - значит, ты идешь в правильном направлении. Твой внутренний мир...

Как высчитать стандартный показатель? Как посчитать отклонение в процентах в Excel

13.02.2020 в 14:13
Содержание
  1. Как высчитать стандартный показатель? Как посчитать отклонение в процентах в Excel
  2. Среднеквадратическое отклонение Excel. Расчет среднего квадратичного отклонения в Microsoft Excel
  3. Стандартное отклонение онлайн. CFA - Дисперсия и стандартное отклонение.
  4. Чем отличается Дисперсия от стандартного отклонения. Что такое Дисперсия и стандартное отклонение? - 2020
  5. Коэффициент вариации

Как высчитать стандартный показатель? Как посчитать отклонение в процентах в Excel

Процент отклонения вычисляется через вычитание старого значения от нового значения, а далее деление результата на старое значение. Результат вычисления этой формулы в Excel должен отображаться в процентном формате ячейки. В данном примере формула вычисления выглядит следующим образом (150-120)/120=25%. Формулу легко проверить 120+25%=150.

Обратите внимание! Если мы старое и новое число поменяем местами, то у нас получиться уже формула для вычисления наценки .

Ниже на рисунке представлен пример, как выше описанное вычисление представить в виде формулы Excel. Формула в ячейке D2 вычисляет процент отклонения между значениями продаж для текущего и прошлого года: =(C2-B2)/B2

Важно обратит внимание в данной формуле на наличие скобок. По умолчанию в Excel операция деления всегда имеет высший приоритет по отношению к операции вычитания. Поэтому если мы не поставим скобки, тогда сначала будет разделено значение, а потом из него вычитается другое значение. Такое вычисление (без наличия скобок) будет ошибочным. Закрытие первой части вычислений в формуле скобками автоматически повышает приоритет операции вычитания выше по отношению к операции деления.

Среднеквадратическое отклонение Excel. Расчет среднего квадратичного отклонения в Microsoft Excel

Одним из основных инструментов статистического анализа является расчет среднего квадратичного отклонения. Данный показатель позволяет сделать оценку стандартного отклонения по выборке или по генеральной совокупности. Давайте узнаем, как использовать формулу определения среднеквадратичного отклонения в Excel.

Определение среднего квадратичного отклонения

Сразу определим, что же представляет собой среднеквадратичное отклонение и как выглядит его формула. Эта величина является корнем квадратным из среднего арифметического числа квадратов разности всех величин ряда и их среднего арифметического. Существует тождественное наименование данного показателя — стандартное отклонение. Оба названия полностью равнозначны.

Но, естественно, что в Экселе пользователю не приходится это высчитывать, так как за него все делает программа. Давайте узнаем, как посчитать стандартное отклонение в Excel.

Расчет в Excel

Рассчитать указанную величину в Экселе можно с помощью двух специальных функций СТАНДОТКЛОН.В (по выборочной совокупности) и СТАНДОТКЛОН.Г (по генеральной совокупности). Принцип их действия абсолютно одинаков, но вызвать их можно тремя способами, о которых мы поговорим ниже.

Способ 1: мастер функций

  1. Выделяем на листе ячейку, куда будет выводиться готовый результат. Кликаем на кнопку «Вставить функцию» , расположенную слева от строки функций.
  2. В открывшемся списке ищем запись СТАНДОТКЛОН.В или СТАНДОТКЛОН.Г . В списке имеется также функция СТАНДОТКЛОН , но она оставлена из предыдущих версий Excel в целях совместимости. После того, как запись выбрана, жмем на кнопку «OK» .
  3. Открывается окно аргументов функции. В каждом поле вводим число совокупности. Если числа находятся в ячейках листа, то можно указать координаты этих ячеек или просто кликнуть по ним. Адреса сразу отразятся в соответствующих полях. После того, как все числа совокупности занесены, жмем на кнопку «OK» .
  4. Результат расчета будет выведен в ту ячейку, которая была выделена в самом начале процедуры поиска среднего квадратичного отклонения.

Способ 2: вкладка «Формулы»

Также рассчитать значение среднеквадратичного отклонения можно через вкладку «Формулы» .

  1. Выделяем ячейку для вывода результата и переходим во вкладку «Формулы» .
  2. В блоке инструментов «Библиотека функций» жмем на кнопку «Другие функции» . Из появившегося списка выбираем пункт «Статистические» . В следующем меню делаем выбор между значениями СТАНДОТКЛОН.В или СТАНДОТКЛОН.Г в зависимости от того выборочная или генеральная совокупность принимает участие в расчетах.
  3. После этого запускается окно аргументов. Все дальнейшие действия нужно производить так же, как и в первом варианте.

Способ 3: ручной ввод формулы

Существует также способ, при котором вообще не нужно будет вызывать окно аргументов. Для этого следует ввести формулу вручную.

  1. Выделяем ячейку для вывода результата и прописываем в ней или в строке формул выражение по следующему шаблону:

    =СТАНДОТКЛОН.Г(число1(адрес_ячейки1); число2(адрес_ячейки2);…)или
    =СТАНДОТКЛОН.В(число1(адрес_ячейки1); число2(адрес_ячейки2);…).

    Всего можно записать при необходимости до 255 аргументов.

  2. После того, как запись сделана, нажмите на кнопку Enter на клавиатуре.

Как видим, механизм расчета среднеквадратичного отклонения в Excel очень простой. Пользователю нужно только ввести числа из совокупности или ссылки на ячейки, которые их содержат. Все расчеты выполняет сама программа. Намного сложнее осознать, что же собой представляет рассчитываемый показатель и как результаты расчета можно применить на практике. Но постижение этого уже относится больше к сфере статистики, чем к обучению работе с программным обеспечением.

Мы рады, что смогли помочь Вам в решении проблемы.

Отблагодарите автора, поделитесь статьей в социальных сетях.

Опишите, что у вас не получилось. Наши специалисты постараются ответить максимально быстро.

Стандартное отклонение онлайн. CFA - Дисперсия и стандартное отклонение.

Рассмотрим дисперсию и стандартное отклонение, - две наиболее широко используемые меры дисперсии для анализа финансовых данных, - в рамках изучения количественных методов по программе CFA.

(см. начало)

Среднее абсолютное отклонение позволяет решить проблему, заключающуюся в том, что сумма отклонений от среднего равна нулю. Для этого при расчете среднего используется абсолютное значение отклонений .

Второй подход к расчету отклонений состоит в их возведении в квадрат.

Дисперсия и стандартное отклонение, основанные на квадрате отклонений, являются двумя наиболее широко используемыми мерами дисперсии:

  • Дисперсия определяется как среднее квадратов отклонений от среднего значения.
  • Стандартное отклонение - это положительный квадратный корень дисперсии.

Далее обсуждается расчет и использования дисперсии и стандартного отклонения.

Дисперсия генеральной совокупности.

Если нам известен каждый элемент генеральной совокупности, мы можем вычислить дисперсию генеральной совокупности или просто дисперсию (англ. 'population variance') .

Она обозначается символом σ2и представляет собой среднее арифметическое квадратов отклонений от среднего значения.

Формула дисперсии генеральной совокупности.

\(\mathbf{ \sigma^2 = { \sum_{i=1}^{N} ( X_i - \mu )^2 \over N } }\)    (формула 11) ,

где μ - это среднее генеральной совокупности, а N - размер генеральной совокупности.

Зная среднее значение μ, мы можем использовать Формулу 11 для вычисления суммы квадратов отклонений от среднего с учетом всех N элементов в генеральной совокупности, а затем для определения среднего квадратов отклонений путем деления этой суммы на N.

Независимо от того, является ли отклонение от среднего положительным или отрицательным, возведение в квадрат этой разности дает положительное число.

Таким образом, дисперсия решает проблему отрицательных отклонений от среднего значения, устраняя их посредством операции возведения в квадрат этих отклонений.

Рассмотрим пример.

Прибыль в процентах от выручки для оптовых клубов BJ's Wholesale Club, Costco и Walmart за 2012 год составляла 0.9%, 1.6% и 3.5% соответственно. Мы рассчитали среднюю прибыль в процентах от выручки как 2.0%.

Следовательно, дисперсия прибыли в процентах от выручки составляет:

Стандартное отклонение генеральной совокупности.

Поскольку дисперсия измеряется в квадратах, нам нужен способ вернуться к исходным единицам. Мы можем решить эту проблему, используя стандартное отклонение, т.е. квадратный корень из дисперсии.

Стандартное отклонение легче интерпретировать, чем дисперсию, поскольку стандартное отклонение выражается в той же единице измерения, что и наблюдения.

Формула стандартного отклонения генеральной совокупности.

Стандартное отклонение генеральной совокупности (или просто стандартное отклонение, а также среднеквадратическое отклонение, от англ. 'population standard deviation') , определяемое как положительный квадратный корень из дисперсии генеральной совокупности, составляет:

\(\mathbf{ \sigma = \sqrt{\sum_{i=1}^{N} ( X_i - \mu )^2 \over N} }\)  (формула 12),

где μ - это среднее генеральной совокупности, а N - размер генеральной совокупности.

Используя пример прибыли в процентах от выручки для оптовых клубов BJ's Wholesale Club, Costco и Walmart за 2012 год, в соответствии с Формулой 12, мы вычислим дисперсию 1.21, а затем возьмем квадратный корень: \( \sqrt{1.21} \) = 1.10.

Как дисперсия, так и стандартное отклонение являются примерами параметров распределения . В последующих чтениях мы введем понятие дисперсии и стандартного отклонения как меры риска.

Занимаясь инвестициями, мы часто не знаем среднего значения интересующей совокупности, обычно потому, что мы не можем практически идентифицировать или провести измерения для каждого элемента генеральной совокупности.

Поэтому мы рассчитываем среднее значение по генеральной совокупности и среднее выборки, взятой из совокупности, и вычисляем выборочную дисперсию или стандартное отклонение выборки, используя формулы, немного отличающиеся от Формул 11 и 12 .

Мы обсудим эти вычисления далее.

Однако в инвестициях у нас иногда есть определенная группа, которую мы можем считать генеральной совокупностью. Для четко определенных групп наблюдений мы используем Формулы 11 и 12 , как в следующем примере.

Пример расчета стандартного отклонения для генеральной совокупности.

В Таблице 20 представлен годовой оборот портфеля из 12 фондов акций США, которые вошли в список Forbes Magazine Honor Roll 2013 года.

Журнал Forbes ежегодно выбирает американские взаимные фонды, отвечающие определенным критериям для своего почетного списка Honor Roll.

Критериями являются:

  • сохранение капитала (эффективность на медвежьем рынке),
  • непрерывность управления (у фонда должен управлять менеджер непрерывно, в течение не менее 6 лет), диверсификация портфелей,
  • Оборачиваемость или оборот портфеля , показатель торговой активности, является меньшим значением из стоимости продаж или покупок за год, деленным на среднюю чистую стоимость активов за год. Количество и состав списка Forbes Honor Roll меняются из года в год.

Чем отличается Дисперсия от стандартного отклонения. Что такое Дисперсия и стандартное отклонение? - 2020

    Table of Contents:

      Когда мы измеряем изменчивость набора данных, есть две тесно связанные статистики, связанные с этим: дисперсия и стандартное отклонение, которые оба указывают, насколько разбросаны значения данных, и включают в себя аналогичные этапы при их расчете. Однако основное различие между этими двумя статистическими анализами заключается в том, что стандартное отклонение является квадратным корнем из дисперсии.

      Чтобы понять различия между этими двумя наблюдениями статистического разброса, необходимо сначала понять, что представляет каждое из них: Разница представляет все точки данных в наборе и рассчитывается путем усреднения квадрата отклонения каждого среднего значения, тогда как стандартное отклонение является мерой разброса вокруг среднего, когда центральная тенденция рассчитывается через среднее.

      В результате дисперсия может быть выражена как среднеквадратичное отклонение значений от среднего значения или квадратное отклонение среднего значения, деленное на число наблюдений, а стандартное отклонение может быть выражено как квадратный корень из дисперсии.

      Строительство Дисперсии

      Чтобы полностью понять разницу между этими статистическими данными, нам нужно понять расчет дисперсии. Шаги для расчета выборочной дисперсии следующие:

  1. Рассчитать среднее значение выборки данных.
  2. Найдите разницу между средним и каждым из значений данных.
  3. Урегулируйте эти различия.
  4. Добавьте квадратичные различия вместе.
  5. Разделите эту сумму на единицу меньше, чем общее количество значений данных.

Причины каждого из этих шагов следующие:

  1. Среднее значение обеспечивает центральную точку или среднее значение данных.
  2. Отличия от среднего значения помогают определить отклонения от этого среднего. Значения данных, которые далеки от среднего, будут давать большее отклонение, чем значения, близкие к среднему.
  3. Различия возводятся в квадрат, потому что, если различия добавляются без возведения в квадрат, эта сумма будет равна нулю.
  4. Сложение этих квадратов отклонений обеспечивает измерение общего отклонения.
  5. Деление на единицу меньше размера выборки дает своего рода среднее отклонение. Это сводит на нет эффект наличия множества точек данных, каждая из которых вносит вклад в измерение разброса.

Как указывалось ранее, стандартное отклонение просто рассчитывается путем нахождения квадратного корня этого результата, который обеспечивает абсолютный стандарт отклонения независимо от общего числа значений данных.

Дисперсия и стандартное отклонение

Когда мы рассматриваем дисперсию, мы понимаем, что есть один существенный недостаток ее использования. Когда мы следуем шагам вычисления дисперсии, это показывает, что дисперсия измеряется в единицах квадрата, потому что мы добавили квадратные различия в нашем расчете. Например, если наши выборочные данные измеряются в метрах, то единицы для дисперсии будут даны в квадратных метрах.

Чтобы стандартизировать нашу меру разброса, нам нужно взять квадратный корень из дисперсии. Это устранит проблему квадратов и даст нам меру разброса, которая будет иметь те же единицы, что и наша исходная выборка.

Есть много формул в математической статистике, которые имеют более привлекательные формы, когда мы формулируем их в терминах дисперсии вместо стандартного отклонения.

Коэффициент вариации

Недостатков, свойственных дисперсии и среднеквадратическому отклонению, лишен ( ). Этот коэффициент представляет процентное отношение среднеквадратического отклонения к среднему арифметическому =. Арифметически отношение и нивелирует влияние абсолютной величины этих характеристик, а процентное соотношение делает коэффициент вариации величиной не именованной. Кроме того, этот коэффициент позволяет оценивать вариабельность (разброс) признака в нормированных границах. Если его значение не превышает 10% , то можно говорить о слабом разбросе. Если коэффициент вариации находится в пределах 10-20% , разброс средний, если превышает 20%, то разброс вариант считают большим. Отличие коэффициента вариации от других критериев разброса наглядно демонстрирует :

Состав работников промышленного предприятия n

На основании приведенных в примере статистических характеристик можно сделать вывод об относительной однородности возрастного состава и образовательного уровня работников предприятия, при низкой профессиональной устойчивости обследованного контингента. Нетрудно заметить, что попытка судить об этих социальных тенденциях по среднеквадратическому отклонению, привела бы к ошибочному заключению, а попытка сравнения учетных признаков «стаж работы» и «возраст» с учетным признаком образование вообще была бы некорректной из-за разнородности этих признаков.

    В некоторых видах распределений среднеквадратическое отклонение и дисперсия ( ) отсутствуют или не могут служить характеристиками рассеяния вариант по другим причинам. В частности, указанное обстоятельство может быть связано с тем, что и вычисляются по отклонениям от среднего арифметического, которое не вычисляется в открытых вариационных рядах и в рядах распределений качественных признаков. Поэтому для сжатого описания такого рода распределений используется другой параметр разброса – (синонимы «перцентиль», «персентиль»), пригодный для статистического описания качественных и количественных признаков при любой форме их распределения. Этот параметр может использоваться и для перевода количественных признаков в качественные. В этом случае качественные оценки присваиваются в зависимости от того, какому по порядку квантилю соответствует та или иная конкретная варианта. Особым свойством квантилей является их полная независимость от конкретных значений каждой, отдельно взятой единицы наблюдения. Значение имеет только порядковый номер, место расположение этой единицы в ряду распределения.